123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182 |
- // Copyright 2022 EMQ Technologies Co., Ltd.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- package main
- import (
- "fmt"
- "github.com/mattn/go-tflite"
- "github.com/lf-edge/ekuiper/pkg/api"
- "github.com/lf-edge/ekuiper/pkg/cast"
- )
- type Tffunc struct{}
- // Validate the arguments.
- // args[0]: string, model name which maps to a path
- // args[1 to n]: tensors
- func (f *Tffunc) Validate(args []interface{}) error {
- if len(args) < 2 {
- return fmt.Errorf("tensorflow function must have at least 2 parameters but got %d", len(args))
- }
- return nil
- }
- func (f *Tffunc) IsAggregate() bool {
- return false
- }
- func (f *Tffunc) Exec(args []interface{}, ctx api.FunctionContext) (interface{}, bool) {
- model, ok := args[0].(string)
- if !ok {
- return fmt.Errorf("tensorflow function first parameter must be a string, but got %[1]T(%[1]v)", args[0]), false
- }
- interpreter, err := ipManager.GetOrCreate(model)
- if err != nil {
- return err, false
- }
- inputCount := interpreter.GetInputTensorCount()
- if len(args)-1 != inputCount {
- return fmt.Errorf("tensorflow function requires %d tensors but got %d", inputCount, len(args)-1), false
- }
- ctx.GetLogger().Debugf("tensorflow function %s with %d tensors", model, inputCount)
- // Set input tensors
- for i := 1; i < len(args); i++ {
- input := interpreter.GetInputTensor(i - 1)
- var arg []interface{}
- switch v := args[i].(type) {
- case []byte:
- if int(input.ByteSize()) != len(v) {
- return fmt.Errorf("tensorflow function input tensor %d has %d bytes but got %d", i-1, input.ByteSize(), len(v)), false
- }
- input.CopyFromBuffer(v)
- continue
- case []interface{}: // only supports one dimensional arg. Even dim 0 must be an array of 1 element
- arg = v
- default:
- return fmt.Errorf("tensorflow function parameter %d must be a bytea or array of bytea, but got %[1]T(%[1]v)", i), false
- }
- paraLen := 1
- for j := 0; j < input.NumDims(); j++ {
- paraLen = paraLen * input.Dim(j)
- }
- ctx.GetLogger().Debugf("receive tensor %v, require %d length", arg, paraLen)
- if paraLen != len(arg) {
- return fmt.Errorf("tensorflow function input tensor %d must have %d elements but got %d", i-1, paraLen, len(arg)), false
- }
- switch input.Type() {
- case tflite.Float32:
- v, err := cast.ToFloat32Slice(arg, cast.CONVERT_SAMEKIND)
- if err != nil {
- return fmt.Errorf("invalid %d parameter, expect float32 but got %[2]T(%[2]v) with err %v", i, args[i], err), false
- }
- err = input.SetFloat32s(v)
- if err != nil {
- return nil, false
- }
- case tflite.Int64:
- v, err := cast.ToInt64Slice(arg, cast.CONVERT_SAMEKIND)
- if err != nil {
- return fmt.Errorf("invalid %d parameter, expect int64 but got %[2]T(%[2]v) with err %v", i, args[i], err), false
- }
- err = input.SetInt64s(v)
- if err != nil {
- return nil, false
- }
- case tflite.Int32:
- v, err := cast.ToTypedSlice(args, func(input interface{}, sn cast.Strictness) (interface{}, error) {
- return cast.ToInt32(input, sn)
- }, "int32", cast.CONVERT_SAMEKIND)
- if err != nil {
- return fmt.Errorf("invalid %d parameter, expect int32 but got %[2]T(%[2]v) with err %v", i, args[i], err), false
- }
- err = input.SetInt32s(v.([]int32))
- if err != nil {
- return nil, false
- }
- case tflite.Int16:
- v, err := cast.ToTypedSlice(args, func(input interface{}, sn cast.Strictness) (interface{}, error) {
- return cast.ToInt16(input, sn)
- }, "int16", cast.CONVERT_SAMEKIND)
- if err != nil {
- return fmt.Errorf("invalid %d parameter, expect int16 but got %[2]T(%[2]v) with err %v", i, args[i], err), false
- }
- err = input.SetInt16s(v.([]int16))
- if err != nil {
- return nil, false
- }
- case tflite.Int8:
- v, err := cast.ToTypedSlice(args, func(input interface{}, sn cast.Strictness) (interface{}, error) {
- return cast.ToInt8(input, sn)
- }, "int8", cast.CONVERT_SAMEKIND)
- if err != nil {
- return fmt.Errorf("invalid %d parameter, expect int8 but got %[2]T(%[2]v) with err %v", i, args[i], err), false
- }
- err = input.SetInt8s(v.([]int8))
- if err != nil {
- return nil, false
- }
- case tflite.UInt8:
- v, err := cast.ToBytes(args, cast.CONVERT_SAMEKIND)
- if err != nil {
- return fmt.Errorf("invalid %d parameter, expect uint8 but got %[2]T(%[2]v) with err %v", i, args[i], err), false
- }
- err = input.SetUint8s(v)
- if err != nil {
- return nil, false
- }
- default:
- return fmt.Errorf("invalid %d parameter, unsupported type %v in the model", i, input.Type()), false
- }
- }
- status := interpreter.Invoke()
- if status != tflite.OK {
- return fmt.Errorf("invoke failed"), false
- }
- outputCount := interpreter.GetOutputTensorCount()
- results := make([]interface{}, outputCount)
- for i := 0; i < outputCount; i++ {
- output := interpreter.GetOutputTensor(i)
- //outputSize := output.Dim(output.NumDims() - 1)
- //b := make([]byte, outputSize)
- //status = output.CopyToBuffer(&b[0])
- //if status != tflite.OK {
- // return fmt.Errorf("output failed"), false
- //}
- //results[i] = b
- t := output.Type()
- switch t {
- case tflite.Float32:
- results[i] = output.Float32s()
- case tflite.Int64:
- results[i] = output.Int64s()
- case tflite.Int32:
- results[i] = output.Int32s()
- case tflite.Int16:
- results[i] = output.Int16s()
- case tflite.Int8:
- results[i] = output.Int8s()
- case tflite.UInt8:
- results[i] = output.UInt8s()
- default:
- return fmt.Errorf("invalid %d parameter, unsupported type %v in the model", i, t), false
- }
- }
- return results, true
- }
- var TfLite Tffunc
|